Find the next three terms of each geometric sequence. Then write the recursive and explicit formulas for the sequence. Make sure you determine which is which.

1. $2,-10,50, \ldots$

Next Three Terms: \qquad
Recursive: \qquad
Explicit: \qquad
2. $36,12,4, \ldots$

Next Three Terms: \qquad
Recursive: \qquad
Explicit: \qquad
3. $\frac{1}{5}, \frac{3}{10}, \frac{2}{5}, \frac{1}{2}, \ldots$

Next Three Terms: \qquad
Recursive: \qquad
Explicit: \qquad
4. $400,100,25, \ldots$

Next Three Terms: \qquad 8. $\frac{3}{5}, \frac{3}{10}, \frac{3}{20}, \frac{3}{40}, \ldots$

Next Three Terms: \qquad
Recursive: \qquad
Explicit:
7. $\frac{1}{3}, \frac{2}{9}, \frac{4}{27}, \frac{8}{81}, \ldots$

Next Three Terms: \qquad
Recursive: \qquad
Explicit: \qquad

Recursive: \qquad

Explicit:

\qquad

都
\qquad
9. Find the first five terms of the geometric sequence defined as follows: $\boldsymbol{a}_{n}=\mathbf{5}\left[\boldsymbol{a}_{n-1}\right] ; \boldsymbol{a}_{0}=-\mathbf{3}$
10. Find the first five terms of the geometric sequence defined as follows: $\boldsymbol{a}_{\boldsymbol{n}}=\frac{\mathbf{2}}{\mathbf{3}}\left[\boldsymbol{a}_{n-1}\right] ; \boldsymbol{a}_{\mathbf{0}}=\mathbf{2}$
11. Jade is training for a marathon. During her first week of training, each run she completes is 90 minutes long. She increases the length of each run by 10% each week. Write the explicit and recursive formulas to represent the length of her run after n weeks. Be sure you say which formula is which.
12. BONUS: Nigel is participating in a read-a-thon. The number of pages he reads each night follows a geometric sequence. On the second day of the read-a-thon, Nigel read 8 pages. On the fifth day of the read-a-thon, he read 64 pages. Write an explicit formula to represent this scenario.
\#13-18: Determine if each sequence is arithmetic, geometric, or neither. If it is arithmetic or geometric, write an explicit, and a recursive formula.
13. $4,1,2,0, \ldots$
14. $10,20,30,40, \ldots$
15. $4,20,100,500, \ldots$
16. $212,106,53,26.5, \ldots$
17. $-10,-8,-6,-4, \ldots$
18. $5,-10,20,40, \ldots$
19. The first term of a geometric sequence is 1 and the common ratio is 9 . What is the $8^{\text {th }}$ term of the sequence?
20. The first term of a geometric sequence is 2 and the common ratio is 4 . What is the $14^{\text {th }}$ term of the sequence?
21. At an online mapping site, Mr. Mosley notices that when he clicks to zoom in on a map the magnification increases by 20% each time.
a. If Mr. Mosley is looking at something that is initially 1 inch on his computer screen, write a formula that represents the magnification of the nth zoom level. (Hint: the common ratio is not 0.2)
b. What is the fourth term of this sequence? What does it represent?

