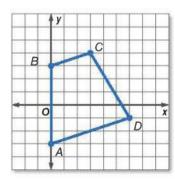
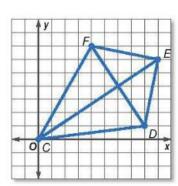

HW 6-4 Slopes of Parallel & Perpendicular Lines


1. A garden is in the shape of a quadrilateral with vertices A(-2, 1), B(3, -3), C(5, 7), and D(-3, 4). Two paths represented by \overrightarrow{AC} and \overrightarrow{BD} cut across the garden. Are the paths perpendicular? Explain.


2. One property of squares is that its diagonals are perpendicular. Determine whether the quadrilateral below is a square based on the diagonals.

3. A trapezoid is a quadrilateral that has exactly one pair of parallel opposite sides.Is ABCD a trapezoid? Explain your reasoning.

4. CDEF is a kite. Are the diagonals of the kite perpendicular? Explain your reasoning.

• A(1, 5), B(4, 4), C(9, -10), D(-6, -5)	6. A(-6, -9), B(8, 19), C(0, -4), D(2, 0)
• A(4, 2), B(-3, 1), C(6, 0), D(-10, 8)	8. A(8, -2), B(4, -1), C(3, 11), D(-2, -9
. A(8, 4), B(4, 3), C(4, -9), D(2, -1)	10. A(4, -2), B(-2, -8), C(4, 6), D(8, 5)
 the line that satisfies each condition. Passes through A(2, -5), parallel to BC with B(1, 3) and C(4, 5) 	12. Slope = -2, passes through H(-2, -4
3. Passes through K(3, 7), perpendicular to \overrightarrow{LM} with L(-1, -2) and M(-4, 8)	14. Passes through X(1, -4), parallel to with Y(5, 2) and Z(-3, -5)

.

.

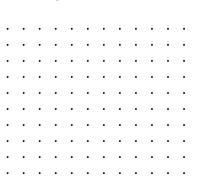
.

.

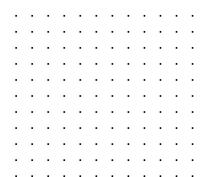
.

.

.


.

.


.

.

15. slope = $\frac{2}{3}$, passes through J(-5, 4)

16. Passes through D(-5, -6), perpendicular to \overrightarrow{FG} with F(-2, -9) and G(1, -5)

Determine whether the graphs of each pair of equations are parallel, perpendicular, or neither.

17.
$$y = 2x + 4$$

 $y = 2x - 10$

18.
$$y = 5x - 8$$
 $y = 3x - 8$

19.
$$y = \frac{1}{2}x - 12$$

 $y = -2x + 7$

20.
$$y = 7x + 3$$
 $y = \frac{1}{7}x - 6$

21.
$$y = 4x + 3$$

 $4x + y = 3$

22.
$$y = -2x$$
 $2x + y = 3$

23.
$$3x + 5y = 10$$
$$5x - 3y = -6$$

24.
$$\begin{array}{ll}
-3x + 4y = 8 \\
-4x + 3y = -6
\end{array}$$

25.
$$2x+5y=15$$
 $3x+5y=15$