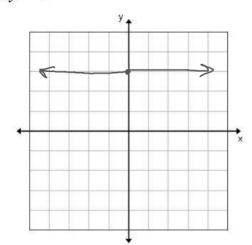
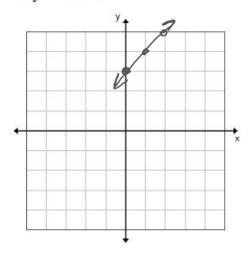
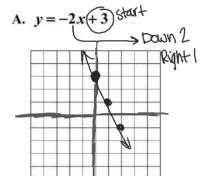

Warm-up: Graph the following equations.

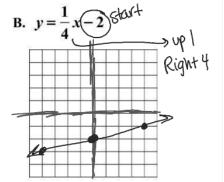

$$1. y = 3x + 0$$

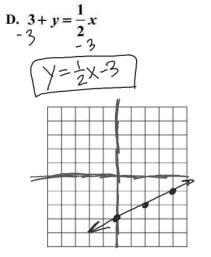

3.
$$x = 3$$

2.
$$y = 3$$



4.
$$y = x + 3$$



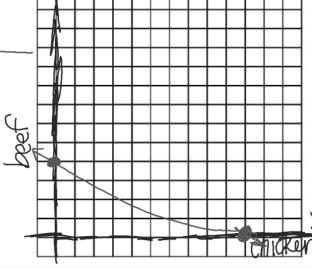

Unit 1

Ex 1: Graph each equation.

C.
$$2x + 4y = 16$$
 $-2x$
 $-2x$
 $-2x - 2x + 16$
 $-2x + 16$
 $-2x + 16$
 $-2x + 16$
 $-2x + 16$

What if it isn't in slope intercept form?

Unit 1


Ex 2: x and y Intercepts:

You are planning a dinner party and have \$20 to spend on the meat. Chicken costs \$2 per pound and beef is \$5 per pound. The following is an equation to represent how many pounds of chicken (x), and how many pounds of beef (y) you might buy to 2x + 5y = 20spend exactly \$20.

A. If you don't buy any beef, how much chicken can you buy? Graph this point on the graph below. What is this 10 lbs of chicken X-intercept point?

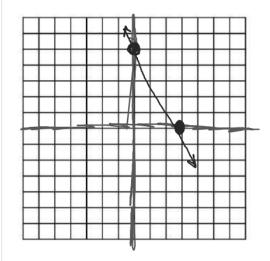
If you don't buy any chicken, how much beef can you buy? Graph this point on the graph below. What is this point?

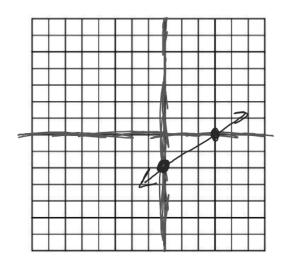
Y-intercept = C/A y-intercept = C/B

Sec1H

Notes 1-4 **Graphing Linear Equations**

Unit 1


Ex 3: Find the x and y intercepts and graph.


A.
$$5x + 3y = 15$$

x-intercept:
$$(3, \circ)$$

y-intercept: $(0, 5)$

B.
$$2x-3y=6$$

x-intercept:
$$(3, 0)$$

y-intercept: $(0, 5)$
 y -intercept: $(0, -2)$
 y -intercept: $(0, -2)$
 y -intercept: $(0, -2)$
 y -intercept: $(0, -2)$

