Sec1

Notes 4-1 **Domain and Range**

Unit 4

Relation: A set of x's that go with a set of y's

Domain: All the x's

Range: All the y's (output)

Set Notation: how we write domain Frange { list all the numbers with commas } no repeats {

Example 1: Write the domain and range of each relation in set

notation.
$$\times$$
 y \times y \times y $\mathbb{D} = \{-1,0,7\}$
A. $f = \{(-1,0),(0,5),(7,-9)\}$ $\mathbb{R} = \{0,5,-9\}$

ı	П	þ		
ı	Г	þ	١.	

x	y
-1	6
0	9
8	15
-5-1	0.83

D= {-1,0,0}

C.

Notes 4-1 Sec1 Unit 4 **Domain and Range**

Function: A relation where every x has only 1 y

Mapping: function if every x only has one MOTIN

*Do not write repeats in the ovals!

Example 2: Write the following relations as a set of ordered pairs and then determine if it represents a function.

Example 3: Create a mapping for the following and determine Domain if it is a function. Range

 $\{(1,2),(5,6),(6,5),(2,1)\}$

Sec1

Notes 4-1 Domain and Range

Unit 4

Example 4: Create a mapping for the following relation. Is it

Vertical Line Test:

It is a function if you can draw a vertical line anywhere on the graph and never touch more than once.

$$(0,0)$$
 $(-1,-2)$

Sec1 Notes 4-1 Unit 4
Domain and Range

Example 5: Determine which of the following relations represent functions.

ND

NO

A.

В.

x	у
-1	4
0	9
8	4
10	6

C.

D.

HOW DO YOU CHECK IF IT IS A FUNCTION?

GRAPH Vertical Line Test No repeats of X'S (domain)

MAPPING Every X has only one arrow

Yes