Notes 7-1 Sec1H Unit 7 **Shifting Exponential Functions**

$$f(x) = a(b)^{x} + c \qquad \alpha(b)^{x} + C \qquad \alpha + C$$

What does the +c do in the equation?

How could you find the *y*-intercept from the equation?

Where is the **growth factor** in the equation?

Example 3: $f(x) = 2(3)^{x} - 2$

Graph the function above by first, graphing the y-intercept & asymptote and then make a small table for a few more points.

$$y-int.$$
 $2(3)^{2}-2$
 $2(3)^{3}-2$
 $2(3)^{3}-2$

Sec1H	Notes 7-1	TI-24 5
	Shifting Exponential Functions	Unit 7

Example 4:

Write an exponential equation that matches the following criteria or graph.

A. Growth Factor: 7

y-intercept: 3 asymptote: -8

$$y = 11(7)^{x} - 8$$

 $f(x) = 11(7)^{x} - 8$

B.

0		
Sec1H	Notes 7-2 Shifting Exponential Functions in Context	Unit 7

Match the function with its correct asymptote and y-intercept.

3.
$$f(x) = 5(3)^{x} + 2$$

A. asymptote:
$$y = 2$$

y-intercept: $(0,3)$

4.
$$g(x) = 2(3)^{x} + 5$$

B. asymptote:
$$y = 2$$
 y-intercept: $(0, 7)$

5.
$$h(x) = 1(3)^{x} + 2$$

C. asymptote:
$$y = 5$$

y-intercept: $(0,7)$

Sec1H

Notes 7-2 Shifting Exponential Functions in Context

Unit 7

Example 2

A. The graphs of two functions f(x) and g(x) are shown below. Write a rule for g(x) in terms of f(x).

B. For the graphs of f(x) and g(x) shown above, write a rule for f(x) in terms of g(x).

$$f(x) = g(x) - 7$$

f(x) = 2x+1 g(x) = 2x-2 g(x) = f(x) = 3

Example 3 f(x) = 2x + 1 and g(x) = 2x - 2. If g(x) can be written as f(x) + k, what is the value of k?

Sec1H Notes 7-2 Unit 7
Shifting Exponential Functions in Context

Example 4 (Constants & Exponential Functions) - Mark gets \$1000 from his grandpa. He hides \$200 in his house and doesn't spend it. He places the remaining \$800 in a savings account that pays 3% annual interest compounded quarterly. Write an equation to calculate how much money will be in the savings account after *x* years. Ignore the money in the savings account for now. Don't worry about the \$200 that is hidden yet.

Equation:

Use the equation to fill out the table below.

Years	Amount in Savings Account	Total (Including the Hidden Money)
0		
1		
2		
3		
4		

Write an equation to include the money in savings and the extra \$200 hidden. What is the initial value of this equation?

	Notes 7-2	
- 9	Shifting Exponential Functions in Context	

Unit 7

(=.025

Practice -

Sec1H

1. You place \$7,500 in an account that pays you 2.5% interest compounded daily. When you withdraw the money you will pay a \$150 fee (no matter when you withdraw the money). Write an equation to calculate how

much you will get if you withdraw your money after x years. $7500 \left(1 + \frac{.025}{365}\right)^{365\%} - 150$

2. A farmer has 50 chickens that he gathers eggs from. This population will not increase or decrease. He has another group of 200 chickens that he hopes will increase by 15% each year. Write an equation to calculate how many chickens the farmer hopes to have based on how many years it has been.

 $f(x) = 200(1+.15)^{x} + 50$

For your reference on the homework, write the general formats for percent growth equations, percent decay equations, and compound interest here. You will need them on the homework.